This could be done with many different softwares/methods. Some time last year, I was looking at MEL to write this script that uses two different surfaces to simulate a space frame according to U/V divisions. This can now be easily performed with just a few steps using Grasshopper (Explicit History Plug-in) in Rhino.

//

// Script written by Howard Jiho Kim | kimjiho@gmail.com | crtl-i.com | 2007

//

// ex.

// spFrSurface(srfName1, srfName2, U, V)

// spFrSurface(“nurbsPlane1”, “nurbsPlane2”, 10, 10)

//

// HORIZONTAL MEMBERS!!

global proc spFrSurface(string $nurb, string $nurb2, int $u, int $v)

{

gridSurface($nurb, $u,$v);

gridSurface($nurb2, $u,$v);

float $u_inc = 1.0/$u;

float $v_inc = 1.0/$v;

float $cv[], $cv2[], $cv3[];

float $i2, $k2;

// get U information

$u = $u + 1;

$v = $v + 1;

for($i=0;$i<$u;$i++)

{

for($k=0;$k<$v;$k++)

{

$i2 = $u_inc * $i;

print (“u:” + $i2 + ” | “);

$k2 = $v_inc * $k;

print (“v:” + $k2 + ” | “);

$cv = `pointOnSurface -u $i2 -v $k2 -position $nurb`;

print( $cv[0] +” “+ $cv[1] +” “+ $cv[2] + ” | “);

$cv2 = `pointOnSurface -u $i2 -v $k2 -position $nurb2`;

print( $cv2[0] +” “+ $cv2[1] +” “+ $cv2[2] +”\n”);

curve -d 1 -p $cv[0] $cv[1] $cv[2] -p $cv2[0] $cv2[1] $cv2[2] -k 0 -k 1;

// print CV

//$x[$k] = $cv[0];

//$y[$k] = $cv[1];

//$z[$k] = $cv[2];

}

//$curveName[$i] = `curve -p $x[0] $y[0] $z[0] -p $x[1] $y[1] $z[1] -p $x[2] $y[2] $z[2] -p $x[3] $y[3] $z[3] -p $x[4] $y[4] $z[4] -p $x[5] $y[5] $z[5] -p $x[6] $y[6] $z[6] -p $x[7] $y[7] $z[7]`;

}

}

// LONGITUDINAL MEMBERS

global proc gridSurface(string $nurb, int $u, int $v)

{

float $u_inc = 1.0/$u;

float $v_inc = 1.0/$v;

float $cv[], $cv2[], $cv3[];

float $i2, $k2;

// get U information

$u = $u + 1;

for($i=0;$i<$u;$i++)

{

for($k=0;$k<$v;$k++)

{

$i2 = $u_inc * $i;

print (“u:” + $i2 + ” | “);

$k2 = $v_inc * $k;

print (“v:” + $k2 + ” | “);

$cv = `pointOnSurface -u $i2 -v $k2 -position $nurb`;

print( $cv[0] +” “+ $cv[1] +” “+ $cv[2] + ” | “);

$k3 = $v_inc * ($k+1);

$cv2 = `pointOnSurface -u $i2 -v $k3 -position $nurb`;

print( $cv2[0] +” “+ $cv2[1] +” “+ $cv2[2] +”\n”);

curve -d 1 -p $cv[0] $cv[1] $cv[2] -p $cv2[0] $cv2[1] $cv2[2] -k 0 -k 1;

// print CV

//$x[$k] = $cv[0];

//$y[$k] = $cv[1];

//$z[$k] = $cv[2];

}

//$curveName[$i] = `curve -p $x[0] $y[0] $z[0] -p $x[1] $y[1] $z[1] -p $x[2] $y[2] $z[2] -p $x[3] $y[3] $z[3] -p $x[4] $y[4] $z[4] -p $x[5] $y[5] $z[5] -p $x[6] $y[6] $z[6] -p $x[7] $y[7] $z[7]`;

}

// get U information

$v = $v + 1;

$u = $u – 1;

for($i=0;$i<$v;$i++)

{

for($k=0;$k<$u;$k++)

{

$i2 = $u_inc * $k;

print (“u:” + $i2 + ” | “);

$k2 = $v_inc * $i;

print (“v:” + $k2 + ” | “);

$cv = `pointOnSurface -u $i2 -v $k2 -position $nurb`;

print( $cv[0] +” “+ $cv[1] +” “+ $cv[2] + ” | “);

$i3 = $u_inc * ($k+1);

$cv2 = `pointOnSurface -u $i3 -v $k2 -position $nurb`;

print( $cv2[0] +” “+ $cv2[1] +” “+ $cv2[2] +”\n”);

curve -d 1 -p $cv[0] $cv[1] $cv[2] -p $cv2[0] $cv2[1] $cv2[2] -k 0 -k 1;

// print CV

//$x[$k] = $cv[0];

//$y[$k] = $cv[1];

//$z[$k] = $cv[2];

}

//$curveName[$i] = `curve -p $x[0] $y[0] $z[0] -p $x[1] $y[1] $z[1] -p $x[2] $y[2] $z[2] -p $x[3] $y[3] $z[3] -p $x[4] $y[4] $z[4] -p $x[5] $y[5] $z[5] -p $x[6] $y[6] $z[6] -p $x[7] $y[7] $z[7]`;

}

}